ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «ТОМСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И ПРОЕКТНЫЙ ИНСТИТУТ НЕФТИ И ГАЗА» (ОАО «ТомскНИПИнефть»)

УДК 553.98:550.84

ЗАКЛЮЧЕНИЕ

по результатам работы

АНАЛИЗ УСТЬЕВЫХ ПРОБ НЕФТИ И ГАЗА СО СКВАЖИНЫ №4 ЕЛЛЕЙ-ИГАЙСКОЙ ПЛОЩАДИ

Договор ЛИ5548 от 1.02.2018 г.

Заместитель генерального директора по Лабораторным Исследованиям

А.В. Сметанин

Начальник управления исследований пластовых технологических жидкостей док. геол.-мин. наук, проф.

флюидов, вомеры. лабораторных реагентов,

Заведующий лабораторией геохимии и пластовых нефтей канд. геол.-мин. наук

З. Самойленко В.В.

СПИСОК ИСПОЛНИТЕЛЕЙ

лабораторных флюидов, Начальник управления исследований пластовых технологических жидкостей и реагентов д-р геол.-минерал. наук Главный специалист, С.В. Фадеева К.Г.-М.Н. M. Bekn Myxo J-Начальник сектора хроматографии М.А. Веклич и масс-спектрометрии, к.х.н. Главный специалист И.И. Сухова Младший научный сотрудник А.В. Жердева Инженер 1 категории Е.Н. Коновалова Инженер М.А. Чудинова

УДК 553.98.550.84

Гончаров И.В. – Анализ устьевых проб нефти и газа со скважины №4 Еллей-Игайской площади. 41 стр., 6 стр. прил., 6 табл., 6 рис., 7 библ.

ОАО «ТомскНИПИнефть». Томск. Июнь 2018. (ООО «Бакчарнефтегаз», ОАО «ТомскНИПИнефть»). Томская область.

РЕФЕРАТ.

Выполнены физико-химические и геохимические исследования устьевых проб нефти и газа из скважины №4 Еллей-Игайской площади.

По результатам хроматомасс-спектрометрического исследования нефтей рассчитан комплекс молекулярных параметров, основанных на распределении насыщенных, ароматических и гетероатомных соединений. По совокупности молекулярных параметров и изотопного состава углерода проведена генетическая типизация изученных флюидов. Сделано предположение об источниках нефтей и газа из разных объектов разработки Еллей-Игайского месторождения.

КЛЮЧЕВЫЕ СЛОВА. Западная Сибирь, Еллей-Игайская площадь, молекулярные параметры, изотопный состав углерода, геохимические исследования, катагенез, нефть.

Составил отв. исполнитель, д.г.-м.н., проф.

Topurful.

И.В. Гончаров

РАСЧЕТ СТОИМОСТИ

на выполнение работ по теме:

«Анализ устъевых проб нефти и газа со скважины №4 Еллей-Игальский плошади»

.№ 10/0	Виды работ/исследований	Единица измерения	Объем	Стоимость единицы, руб. с НДС (18%)	Стоимость итого, руб. с НДС (18%)	И сполнитель
1	Приемы и регистрация проб	проба	3	166,47	499,41	
2	Анализ устъевий прибы нефти	80 348,84				
2.1	Плотность при 20°С	проба	2	443,92	887,84	1
22	Кипематическая вязкость (при 20°C)	переба	2	1 220,77	2 441,54	
2.3	Кинематическая вязкость (при 50°С)	проба	2	1.220,77	2 441,54	
2 4	Фракционный состав до 300 °C	проба	2	1 220,77	2 441,54	1
2.5	Молекулярная масса	проба	2	2 663,50	5 327,00	1
2.6	Содержание сбщей серы	проба	2	1 109,79	2 219,58	
2.7	Содержыние смол и всфальтенов	проба	2	3 440,35	6.880,70	
2.8	Содержание парафинов	пъода	2	6.658,74	13.317,48	1
2.9	Температура застывания	проба	2	1 109,79	2 219,58	
2.10	Объемная доля воды	проба	2	554,90	1 109,80	1
2.11	Содержание механических примесей в затрязнешних пробах	проба	2	2 774,48	5 548,96	
2:12	Температура насъздения пефти парафилом	пэоба	2	17 756,64	35 513,28	Лаборатория геохный и пластовых нефтей САС
3	Компонентный состав попутного газа С ₇ -С ₁₀	вдосп	1	7 213,04	7 213,64	«ТомскНИПИпеф.»
4	Геохимические исследования проб пефти и газа				107 982,54	
4.1	Прупловой анализ нефтей (выделение и определение количественного совержания насыщенных дроматических углеводородов, смед и асфальтения)	проба	2	9 988,11	19 976,22	
4.2	XMC апализ пасыщенной фракции в режиме SIM	аншиз	2	14 538,25	29 076,50	
4.5	XMC анализ ароматической фракции в режиме SIM	знализ	2	14 538,25	29 076,50	
1.1	Изотопный состав углерода жилких или тверчых проб (тефть, насыщениям фракция, арематическия фракция, смолы, асфальтены)	анцлиз	10	1 385,54	18 866,40	
4.5	Изотопный состав углерода метана	анализ	5.	2 108,50	2 108,60	
4.6	Изогонный состав углерода газовых компонентов С2- С5, при содержании компонента не менее 0.1 %	анынз	1	8 878,32	8 878,32	
5	Офприление протоколов КХА. Оформление Заключ приложением фактического материала (10 % от его по догивару)		10% от ст	гонмости работ	19 604,44	
			Итого с	· НДС (18%) _э руб:	215 648,87	

Соглания и проктор ООС «Бактарий» проктор ОО

ОАО «Т. бил НПТИ чефт. »

Toucelies.

	1.
	1.1.
(1.2.
,)9	
9	1.3.
13	1.4.
	1.5.
	1.6.
	2.
	2.1.
	2.2.
	2.3.
20	2.4.
28	2.5.

23		2.1 -
		2.2 -
25		
		2.3 –
25		
		2.4 -
27		-
-		2.5 –
-	(2018 2015 .)	
)31	(
-		2.6 –
32	(1 - 5)	

			,			1.1 –
10						
-	4				-	2.1 -
15						
	-	4				2.2 -
17						
			,			2.3 –
		(-	
19			_	4)	
19					2.3	
						2.4 -
24						
26		_				2.5 -
						2.6 -
	!				.4 -	

1.

1.1.

.

_

20 ⁰ 3900-85. 20 50 ⁰ 33-2000.

HORIBA

51947-2002 . 51947-2002

0,0150 % 5,00 %. 153-39.2-048

CRYETTE.

,

20° (11851)

. 2177-99, 100^{-0} 300^{-0}

 $50^{\:0}\:$.

39.034-76. 2477-2014.

6370-83.

1.2.) [1]. 500 10 . 200-500 1.3. «Hewlett Packard» 6890/5973 HP-1-MS (30 ; 0.25 (3 45 , 45 310 3 / , 310 20 .). ChemStation.

1.1.

9

1.1 – ,

	;()		•
/	(m/z 57)		., ., 1981
Ki	(+)/(- ₁₇ + - ₁₈) (m/z 57)	,	, 1974
4MDBT/1MDBT	4MDBT/1MDBT (- , m/z 198)	- 17 - 18	Radke M. et al., 1986
MPI-1	1,5*(2MP+3MP)/(0.69*P+1MP+9MP) (P- , m/z 178; MP - , m/z 192; 0.69- ,		Radke M. et al., 1986
C29/C27St	C ₂₉ /C ₂₇ , m/z 218	28 29	Grantham P.J. et al., 1988
C28/C29St	C ₂₈ /C ₂₉ , m/z 218	28 29	Grantham P.J. et al., 1988
S/(S+R) C29 St	$S/(S+R)$, % (S R – S R 5α ,14 α ,17 α (H)- , m/z 218)	S R	Seifert W.K. et al., 1986
ββ/(ββ+αα) C29 St	$SS/(SS+\Gamma\Gamma)$, % (- S R 5α , 14 ,17 (H)- 5α , 14 α ,17 α (H)- , m/z 218	ββ αα 29	Seifert W.K. et al., 1986
DIA/REG	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 27	Mello M.R. et al., 1988
Ts/ (Ts+Tm)	(Ts - 22,29,30- , m/z 191)	Ts Tm	Seifert W.K. et al., 1978
H31S/(S+R)	$S/(S+R)$, % (S R - 7α ,21 β (H)-29- , m/z 191)	S R	Ensminger A. et al., 1977; Seifert W.K. et al., 1980
H/(H+M)	H/(H+M) (H- , M- , m/z 191)	-	Seifert W.K. et al., 1980
35/ 34	S R (m/= 101)		Peters K.E. et al., 2005
29/ 30	S R 34 (m/z 191) 29 30 (m/z 191)		Peters K.E. et al., 2005
TA(I)/ TA(I+II)	TA(I)/TA(I+II) TA(I) - 20- , TA(II) - 20S 20R, 20S 20R, 20S 20R, 20S 20R,	,	Beach F. et al., 1989
ABI	2 21/(20-+ 22), 15- (21) 14-(20) 16- (22), (m/z 91)		, 2013
/	- 13- 16 (m/z		, 2013

	;()	•	
91) -	13- 16 (m/z 57)			
26-	25 27			., 2013

. .). ³). . 2676-2683 , 1.4. DELTA V ADVANTAGE («Thermo Fisher Scientific», .

(«Thermo Fisher Scientific», . ,)
Flash 2000 ConFlo IV,

·

,

-.

· •

;

11

```
\delta\left(\%_{0}\right) = \left(\frac{Rx - Rstd}{Rstd}\right) * 1000,
```

```
R -
      x -
      std -
                                                                           9-10
                                                                                     13
                                                - NBS-22 (mineral oil) c
_{\text{vPDB}} = -30,03 \text{ }\% IAEA-CH-7 (polyethylene) = -32,15%
                                                                        3
                           0,1 ‰.
                   1.5.
                     31371.7-2008 (
                                                                               5000.2
         2000 .
                                   5000.2,
                                                                 3
                                                                         (3
                  )
                                        2- 5
                                           (L=3,\emptyset)
                                                                               Haysep R
80/100
                    1.
                                                                          2
                      NaX 60/80 (L = 2 , Ø = 3 ).
             CaA 60/80
                            (L=4,\emptyset =3)
                                                                          3.
                                                                                40
                                                                                200
```

```
130 ), 0 /
                                                                                     9
                                                              200 ), 0 /
                                                       130
                                                                                     15
                                                                                     210
                               1 (TCD1), <sup>0</sup>
                                                                                     210
                               2 (TCD2), <sup>0</sup>
                                                                                     210
                               3 (TCD3), <sup>0</sup>
                                                                                     210
                     1 (
                                                                         )
                                       1
                                                                                     35
                     2 (
                                       2
                                                                                     15
                                                                                     2000 ,
                                        6- 10
                                                                                       HP-1
                                                            ),
(30 \times 0.319)
                 × 3,00
                            ).
                                                                                     40
                                                                                     150
                                                                                     6
                                                                                     160
                                                                                     180
                                                                                     61,5
                             2.5).
                     (
               1.6.
                          2- 5
                                                                                  DELTA V
ADVANTAGE,
                                                        ConFlo IV
                                                          GC Isolink
              TRCE GC ULTRA,
         PoraPlot Q (50 • 0,32
                                    • 10 ).
```

13

:

(blackflush),

2

.

0,1 .% .

3

0,2 ‰.

AIR LIQUIDE,

Thermo 1.1 High: 13 $_{\text{vPDB}}(\text{CH}_4) = -45.5 \%,$

Thermo 1.2 High: 13 $_{\text{vPDB}}$ (CH₄) = -24,1 ‰.

2.

2.1.

- ,

, 4 -:

1) 9, 5, :2764-2772 ;

2) 10, 1(2-3-4), : 2661-2664 , 2656-

2659 , 2641-2643 .

2.1 ().

2.1 - - 4 -

	• -	, .4,	, .4,
		180192	180193
		10.01.2018	25.01.2018
		5	1(2-3-4)
		2764-2772	2661-2664 , 2656-2659 , 2641-2643
20	/ 3	781,3	826,1
	% .	0,0762	0,325
	% .	0,58	0,78
	% .	2,0	4,2
	% .	0,4	0,9
		156,0	186,0
:			
		70,0	63,0
100	% .	1,0	2,0
150	% .	21,0	11,0
200	% .	48,0	25,0
250	% .	67,0	43,0
300	% .	81,0	64,0

2.1

```
5
                          1 (2-3-4).
                          5
           300^{0}
                         81,0 %,
                                            1(2-3-4) - 64,0\%.
                              5.
              100^{0} .
                                             300 0 .
                    , 81 %
                                          51858-2002,
                                        : 2764-2772 ;
1)
           9,
                    5,
                                            (
                                                                      0,60 %
            );
                                                       0 (
                                                            ).
                                              : 2661-2664 , 2656-2659 , 2641-
2)
           10,
                     1(2-3-4),
2643 .
                                                                 - 0,60 %
                                            (
            );
                                                       1 (
                                                              ).
                                                                      1 (2-3-4)
                                                                 5
                        2015 2016 . .
                                                            5,
                                                 2015 .
```

16

2.2.

,

(. 1.2) .

2.2.

2.2 - 4 -

,			%	•
2661-2664, 2656-2659, 2641-2643	1 (2-3-4)	25.01.2018	65,66	26,85
2764-2772	5	10.01.2018	82,06	13,92

2.2 ,

. 5

-

1 (2-3-4). ()

5 1. (5)

, 1.

().

2.3.

(

Hewlett-Packard 6890/5973 SIM.

,

(
).

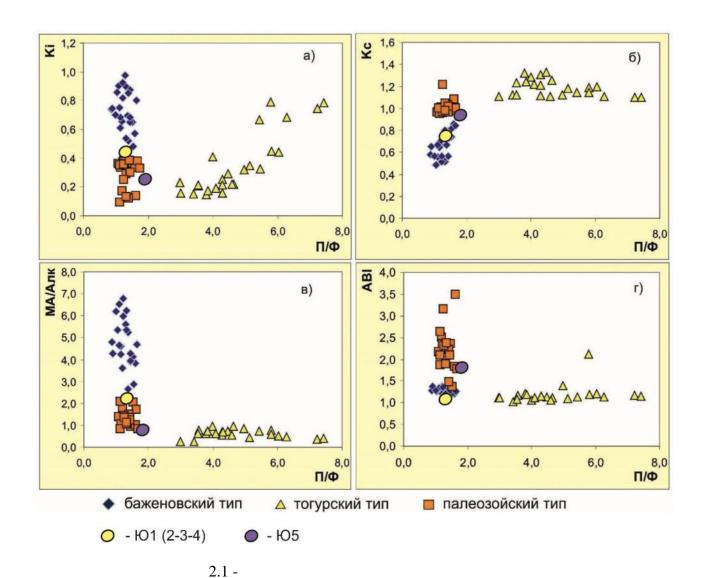
2.3 - , 4 -

,			/	Ki	4 / 1	28/ 29 St	29/ 27 St	35/ 34	ABI	/	
2990-3000	Pz	2016	1,75	0,23	4,10	0,44	2,42		2,13		
2661-2664, 2656-2659 2641-2643	1(2-3-4)	25.01.2018	1,43	0,41	2,18	0,84	0,93	0,86	1,15	2,15	0,71
2764-2772	5	10.01.2018	1,97	0,23	2,40	0,75	1,08	0,82	1,70	0,98	0,93

2.3

,			S/(S+R) St-C29	bb/(aa+bb) St-C29	Ts/ (Ts+Tm)	H/(H+M)	H29/ H30	H31 S/(S+R)	DIA/ REG	TA(I)/ TA(I+II)	MPI-1
2990-3000	Pz	2016	0,49	0,55	0,54	0,88	0,66	0,60	0,68	0,23	0,67
2661-2664 , 2656-2659 , 2641-2643	1(2-3-4)	10.01.2018	0,55	0,50	0,42	0,90	0,61	0,58	2,17	0,25	0,56
2764-2772	5	25.01.2018	0,55	0,51	0,48	0,89	0,70	0,60	1,58	0,22	0,55

1.1


```
2.3
                                               ).
                                                       1,43
                                                               1,97.
                                      1
                                         5.
                            35/ 34
                                                          0,5
                                           27 - 29.
29
                                  27 -
                                                                         (
                                                                                350
            29
      ),
                                  [2].
          28/ 29
                                                                          21
                                      ABI (
          20- 22) [3].
            29/ 27
                                         29/ 27St
                                                                   1 - 0,93,
          5 - 1,08.
                                                                     35/ 34
                   ABI
               ).
                                5
                                                                               ABI,
                                                        1,20 - 1,40 [3].
                                    ABI
           29/ 27
                                                                             5
                                         29/ 27
             15-
                                                               ABI
                                                                          1,4 - 1,5).
                                                5
         28/ 29St
                                                     (0,75),
```

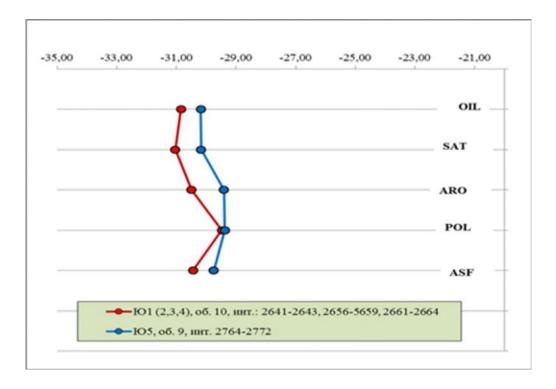
20

28/ 29 0,5, 0,3-0,5. 5). 1,70 - 1,80. 5 Ki (/ , 28/ 29St) 1 ABI, 28/ 29St DIA/REG (2,17), 1), DIA/REG 0,6 - 1,0, 0,6 - 1,0. [2]. DIA/REG 1 5 (1,58), 2016 , 0,68 (2.3). $(S/(S+R)C_{29}, /(+)C_{29})$ 30 (H/(H+M))2.3). 5 1

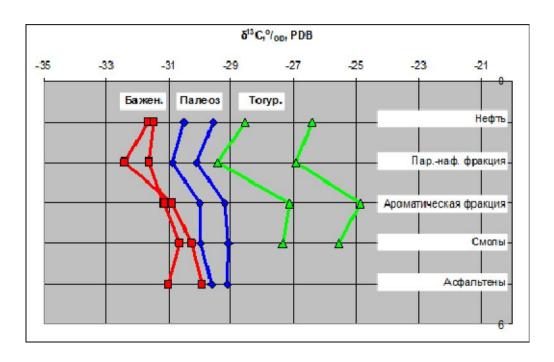
[2].

```
1
                                Ki
                                                             5,
  1
  5.
                                                    29/ 30, Ts/(Ts+Tm), TA(I)/TA(I+II),
DIA/REG, 4
                 /1
                                   2.3)
                                                       1 (0,4)
                              Ki
          1
                                               (Ki, MPI-1)
                                                   ),
               (
         1 (2-3-4).
                                              1 (2-3-4),
         2.1).
                                                         1 (2-3-4)
                                                (
                                                          2.3),
                                                             5,
                                        (
                                                 2.2).
     5
                         (
                                        29/ 28St).
```


2.4


, -10 .
13 (- (‰))
PDB.
2.4 2.2 13
.
2.4 13

, 2.3


2.4 -

,							
					u13C, ‰		
2661-2664, 2656-2659, 2641-2643	1(2-3-4)	25.01.2018	-30,85	-31,04	-30,50	-29,47	-30,44
2764-2772	5	10.01.2018	-30,18	-30,17	-29,41	-29,37	-29,74

: - -

2.2 -

2.3 -

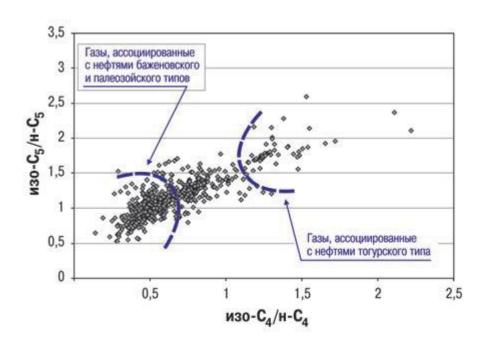
2.2 2.3 , (1 (2-3-4)) 13, 5 13 1 (2-3-4) (2.2). 2.4. 5 (2764-2772). 31371.7-2008 (). 2.5). 2.5 -. 4, . 9, 5; , % : 2764-2772 .) 0,0118 0,0333 1,22 1,17

	1,64
	0,450
-	0,343
	0,161
-	0,116

91,64

3,06

6	0,092
7	0,048
8	0,0130
9	0,0019


91,64 % ., .

,

- ,

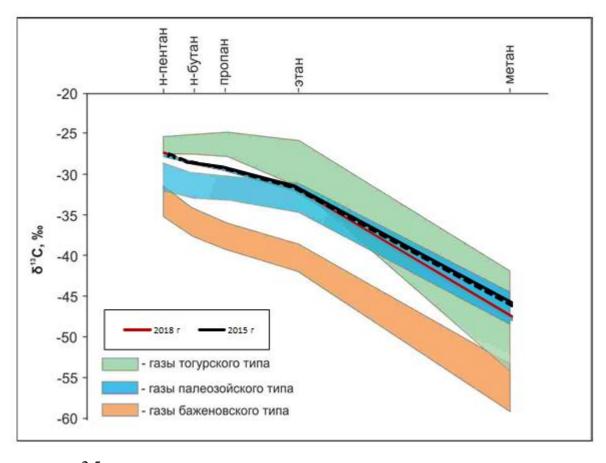
,

1,2.

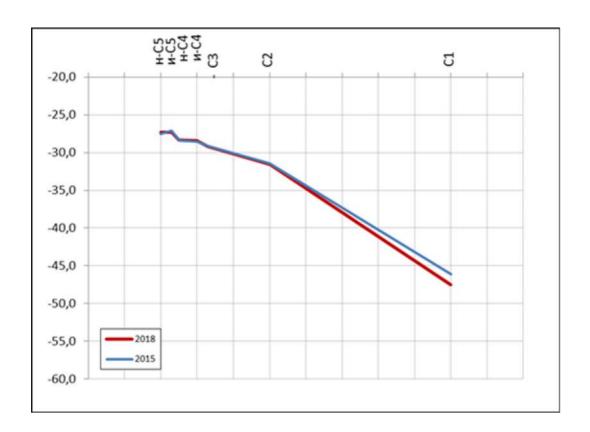
2.4 -

1,3, () 2.2, 2.3). 2.4). [4]. 2.5. 2- 5 13 PDB, 13 (‰) = { $[(^{13} /^{12})$: $(^{13} /^{12})$] -1} 1000. 13 /12 (13) 13

0.1 .% .PEF-1 0.2%. 2.6.


2.6 - .4

						u 13C ,	% 0		
,									
							1		•
2764 - 2772	5	14.01.2018	-47,5	-31,5	-29,2	-28,5	-28,4	-27,3	-27,3


2.5
(1-5)
5
2015
.
;
, [4]. 2.5
, 2015 ., , (2.6),

. , , 5 - , ,

,

2.5 – (2018 2015 .) - (

1. (2015 2016 .). 5 1. 2. (1 (2-3-4) (). oil window, 5 3. 4. 5, 5 5.

33

1.		(-
)/ ,	,	
	, ,	:	,1984. – 431 .
2.	Peters K.E., Walters C.C., Moldowan	J.M. The biomark	er guide. – Cambridge,
	U.K.: Cambridge University Press. – 20	05. – 1155 p.	
3.	,	. ,	//
		« «	». – 2013. – 4. –
	.20-29.		
4.	,,	,	,
	,		
	-	//	. – 2012. – 11.
	8-13.		
5.	,,	٠.,	,
	-	() //
	. – 2014. – 11. – .12-16.		
6.	,,,		
	//	:	V
	: -		, 2003.
	– C. 10-13.		
7.	,	,	
	-		. – 2005. –
	8. – . 810-816.		

ОАО «ТомскНИПИнефть»

Лаборатория геохимии и пластовых нефтей

Аттестат аккредитации № РОСС RU.0001.512150 634027, г. Томск, пр. Мира, 70

выдан 13 октября 2015 г. тел.: (3822) 611800 вн. 2190, факс (3822) 611880

ПРОТОКОЛ РЕЗУЛЬТАТОВ ИСПЫТАНИЙ № 120 от 14.06.2018 г.

Экз. № Д

Наименование и адрес заказчика: ООО «Бакчарнефтегаз», 634021, г. Томск, пр. Фрунзе, 111

Объект испытания:

Дата получения объекта:

нефть 17.04.2018 г.

Дата отбора:

10.01.2018 r.

Даты проведения испытания:

18.04.2018 г. – 08.06.2018 г.

Шифр пробы: Место отбора: P180192

Условия отбора:

Еллей-Итайское м-е, скв. 4, об. 9

пласт Ю₅, интервал перфорации: 2764-2772 м

ПОКАЗАТЕЛЬ	ЕДИНИЦА ИЗМЕРЕНИЯ	пдпа ми	РЕЗУЛЬТАТ ИСПЫТАНИЯ	ПОГРЕШПОСТЬ, ±∆	ПРИМЕЧАНИЕ
Плотность	KI/M ³	ГОСТ 3900-85 п.1	781,3	1,1	при 20 °C
Вязкость кинемагическая	MM ² /c	ΓΟCT 33-2000	2,106	0.036	при 20 °C
Вязкость кинематическая	MM ² /c	ГОСТ 33-2000	1,326	0,023	при 50 °C
Массовая доля серы	%	ГОСТ Р 51947-2002	0.0762	0.0113	-
Массовая доля парафина	%	ГОСТ 11851-85 (метод А)	0,4	0,2	-
Массовая доля воды	%	ГОСТ 2477-2014	1,0	0.1	-
Массовая доля механических примесей	%	ГОСТ 6370-83	0,26	0,14	100
Фракционный состав: - объем отгона	°C % 05.	ГОСТ 2177-99 (метод Б)	HK - 70,0 no 100 °C - 1,0 no 150 °C - 21,0 no 200 °C - 48,0 no 250 °C - 67,0 no 300 °C - 81,0	5,0 1,4	(+)
Температура застывания	°C	ГОСТ 20287-91 (метод Б)	минус 21,0	6,0	-

/ Заведующий лабораторией

ATTA-ДОКУМЕНТОВ

В. В. Самойленко /Веклич И. А. 1

Протокол испытания не может быть частично поспроизведен без письменного разрешения заведующего лабораторией. Результаты протокова относятся только к объекту, прошедшему испытания. Проба отобрана Заказчиком. Лаборатория не несёт ответственность за отбор проб.

ОАО «ТомскНИПИнефть» Лаборатория геохимии и пластовых нефтей

634027, г. Томск, пр. Мира, 70

тел.: (3822) 611800 вн. 2190, факс (3822) 611880

Приложение к протоколу результатов испытаний № 120 от 14.06.2018 г. Экз. № ∠

Наименование и адрес заказчика: ООО «Бакчарнефтегаз», 634021, г. Томск, пр. Фрунзе, 111

Объект испытания:

Дата получения объекта:

Дата отбора:

Даты проведения испытания:

Шифр пробы: Место отбора: Условия отбора:

нефть

17.04.2018 г. 10.01.2018 г.

18.04.2018 г. – 08.06.2018 г.

P180192

Еллей-Игайское м-е, скв. 4, об. 9

пласт Ю5, интервал перфорации: 2764-2772 м

ПОКАЗАТЕЛЬ	АЛИНИЛУЛ ВИНЭЧЭМЕИ	нд на ми	ТАТАКУЕЗЧ КИНАТЫПЭИ	ПОГРЕШПОСТЬ, ±∆
Массовая доля асфальтенов	%	Методика ВНИИНП	0,58	0,08
Массовая доля смол силикагелевых	9/0	Методика ВНИИНП	2,0	0,3
Молекулярная масса		OCT 153-39.2-048-2003	156,0	6,7
Температура пасышения нефти парафином	°C	OCT 39.034-76	минус 3,0	3,0

/Заведующий лабораторией

В.В. Самойленко /Веклич М.А.,

ОАО «ТомскНИПИнефть»

Лаборатория геохимии и пластовых нефтей

Аттестат аккредитации № РОСС RU.0001.512150 634027, г. Томск, пр. Мира, 70

выдан 13 октября 2015 г.

тел.: (3822) 611800 вн. 2190, факс (3822) 611880

ПРОТОКОЛ РЕЗУЛЬТАТОВ ИСПЫТАНИЙ № 121 от 14.06.2018 г.

Экз. №_____

Наименование и адрес заказчика: ООО «Бакчарнефтегаз», 634021, г. Томск, пр. Фрунзе, 111

Объект испытания:

Дата получения объекта:

Дата отбора:

Даты проведения испытания:

Шифр пробы:

Место отбора:

Условия отбора:

нефть

17.04.2018 г. 25.01.2018 г.

18.04.2018 г. - 08.06.2018 г.

P180193

Еллей-Игайское м-е, скв. 4, об. 10

пласт Ю1(2-3-4), интервал перфорации: 2661-2664 м, 2656-

2659 м, 2641-2643 м

ПОКАЗАТЕЛЬ	ЕДИНИЦА ИЗМЕРЕНИЯ	НД НА МИ	РЕЗУЛЬТАТ ИСПЫТАНИЯ	ПОГРЕШПОСТЬ, ±∆	ПРИМЕЧАНИЕ
Плотность	KE/M ³	ГОСТ 3900-85 п.1	826.1	1,1	при 20 °C
Вязкость кинематическая	MM ² /c	ΓΟCT 33-2000	4,640	0,079	при 20 °C
Вязкость кинематическая	MM ² /c	ГОСТ 33-2000	2,472	0.042	при 50 °C
Массовая доля серы	%	ΓΟCT P 51947-2002	0,325	0,033	
Массовая доля парафина	%	ГОСТ 11851-85 (метод А)	0,9	0,4	
Массовая доля механических примесей	%	ГОСТ 6370-83	3,30	0,14	-
Фракционный состав: - объем отгона	°C % o5.	ГОСТ 2177-99 (метод Б)	IIK – 63.0 до 100 °C – 2.0 до 150 °C – 11.0 до 200 °C – 25.0 до 250 °C – 43.0 до 300 °C – 64.0	5,0 1,4	-
Температура застывания	°C	ГОСТ 20287-91 (метод Б)	минус 20,0	6,0	-

Заведующий лабораторией

В. В. Самойленко /Векиих М.А.

Протокол испытания не может быть частично воспроизведен без письменного разрешения заведующего лабораторией. Результаты протокола относятся только к объекту, прошедшему испытания. Проба отобрана Заказчиком. Лаборатория не несёт ответственность за отбор проб.

ОАО «ТомскНИПИнефть» Лаборатория геохимии и пластовых нефтей

634027, г. Томск, пр. Мира, 70

тел.: (3822) 611800 вн. 2190, факс (3822) 611880

Приложение к протоколу результатов испытаний № 121 от 14.06.2018 г. Экз. № 🗸

Наименование и адрес заказчика: ООО «Бакчарнефтегаз», 634021, г. Томск, пр. Фрунзе, 111

Объект испытания:

нефть

Дата получения объекта:

17.04.2018 г.

Дата отбора:

25.01.2018 г. 18.04.2018 г. – 08.06.2018 г.

Даты проведения испытания: Шифр пробы:

P180193

Место отбора:

Еллей-Игайское м-е, скв. 4, об. 10

Условия отбора:

пласт Ю1(2-3-4), интервал перфорации: 2661-2664 м, 2656-2659 м, 2641-2643 м

ПОКАЗАТЕЛЬ	ЕДИНИЦА ИЗМЕРЕНИЯ	НД НА МИ	ТАТЫЛ. ТАТЫН ТАПИН КИНАТЫЛЫ	ПОГРЕШПОСТЬ, ±∆
Массовая доля асфальтенов	%	Методика ВНИИНП	0,78	0.11
Массовая доля смол силикагелевых	%	Методика ВНИИНП	4,2	0,6
Молекулярная масса		OCT 153-39.2-048-2003	186,0	8,0
Температура насыщения нефти парафином	,c	OCT 39.034-76	минус 1,0	3,0
Массовая доля воды	%	ΓΟCT 2477-2014	81,0	2,9

Заведующий лабораторией

В. В. Самойленко / Вексин И. А.

ОАО «ТомскНИПИнефть»

Лаборатория геохимии и пластовых нефтей

Аттестат аккредитации № РОСС RU.0001.512150 634027, г. Томск, пр. Мира, 70

выдан 13 октября 2015 г. тел.: (3822) 611800 вн. 2190, факс (3822) 611880

ПРОТОКОЛ РЕЗУЛЬТАТОВ ИСПЫТАНИЙ № 122 от 14.06.2018 г. Экз. №______

Наименование и адрес заказчика: ООО «Бакчарнефтегаз», 634021, г. Томск, пр. Фрунзе, 111

Наименование объекта (в соответствии с газы горкочие природные для промышленного и коммунально-бытового назначения

областью аккредитации):

Объект исследования: Дата получения объекта:

17.04.2018 г.

Дата отбора:

14.01.2018 г. 27.04.2018 г.

Даты проведения испытания:

P180194

Шифр пробы:

Место отбора:

Еллей-Игайское м-е, скв. 4, об. 9

Условия отбора:

пласт Ю5, интервал перфорации: 2764-2772 м

ПОКАЗАТЕЛЬ, ЕДИНИЦА ИЗМЕРЕНИЯ	нд на ми	РЕЗУЛЬТАТ ИСПЫТАНИЯ	РАСШИРЕННАЯ АБСОЛЮТНАЯ ПЕОПРЕДЕЛЕННОСТЬ РЕЗУЛЬТАТОВ ИСПЫТАНИЙ, ± U(X) ПРИ К=2	ПРИМЕЧАНИЕ
Молярная доля гелия, %	ГОСТ 31371.7-2008	0,0118	0,0009	
Молярная доля водорода, %	(метод А)	0,0333	0.0022	
Молярная доля диоксида углерода, %		1,22	0,07	
Молярная доля азота*, %		1,17	0,05	
Молярная доля мегана*, %		91,64	0,08	
Молярная доля этана, %		3,06	0,12	
Молярная доля пропана, %		1,64	0,10	
Молярная доля изобутана, %		0,450	0,027	
Молярная доля и-бутана, %		0,343	0,021	
Молярная доля изопентана, %		0,161	0,010	
Молярная доля н-пентана, %		0,116	0,007	
Молярная доля гексанов, %		0,092	0,006	
Молярная доля гептанов, %		0,048	0,003	
Моляриая доля октанов, %		0,0130	0,0013	
Плотность, кг/м3	ГОСТ 31369-2008	0,7506	0,0030	расчетная величина. T=20 °C
Плотность относительная		0,6231	0,0025	P=101,325 кПа
Теплота сгорация низшая, МДж/м ³		35,38	0,08	расчетная величина,
Число Воббе высшее, МДж/м3		49,61	0,15	- T=25 °C Р=101.325 кПа

Примечание: *- молярная доля метана опрождатась по анадизу, азот измерялся индивидуально.

SKYMENTOB

Заведующий лабораторией

В. В. Самойленко / Веклиг М. А. /

Протокол испытация не может быть частвий выстроизможен баз письменного разрешения заведующего лабораторией. Результаты протокола относятся только к объекту оприделему испытация. Проба отобрана Заказчиком. Лаборатория не несет ответственность за отбор проб.

ОАО «ТомскНИПИнефть» Лаборатория гсохимии и пластовых нефтей

634027, г. Томск, пр. Мира, 70

тел.: (3822) 611800 вн. 2190, факс (3822) 611880

Приложение к протоколу результатов испытаний № 122 от 14.06.2018 г. Экз. № ∠

Наименование и адрес заказчика: ООО «Бакчарнефтегаз», 634021, г. Томск, пр. Фрунзе, 111

Объект исследования:

Дата получения объекта:

17.04.2018 г.

Дата отбора:

14.01.2018 г.

Даты проведения испытания: Шифр пробы:

27.04.2018 г.

P180194

Место отбора:

Еллей-Игайское м-е, скв. 4, об. 9

Условия отбора:

пласт Ю₅, интервал перфорации: 2764-2772 м

Объект исследования:

газ

ПОКАЗАТЕЛЬ, ЕДИНИЦА ИЗМЕРЕПИЯ	НД НА МИ	РЕЗУЛЬТАТ ИСПЫТАНИЯ
Молярная доля нонанов, %	ГОСТ 31371.7-2008 (метод А)	0,0019
Молярная масса, кг/кмоль	Расчетный метод	17,967

Заведующий лабораторией

В. В. Самойленко / Веклиг М. А.1